Speech Recognition using the Epochwise Back Propagation through time Algorithm
نویسنده
چکیده
In this paper, the artificial neural networks are implemented to accomplish the English alphabet speech recognition. The design an accurate and effective speech recognition system is a challenging task in the area of speech recognition. We implemented a new data classification method, where we use neural networks, which are trained and performance can be defined on the basis of recognition rate. This method gave comparable result to the already implemented neural networks. In this paper, Back propagation neural network architecture used to recognize the time varying input data, and provides better accurate results for the English Alphabet speech recognition. The Epochwise Back Propagation through time (BPTT) algorithm uses the epoch values of input signal to train the network structures and yields the satisfactory results.
منابع مشابه
Robot Arm Performing Writing through Speech Recognition Using Dynamic Time Warping Algorithm
This paper aims to develop a writing robot by recognizing the speech signal from the user. The robot arm constructed mainly for the disabled people who can’t perform writing on their own. Here, dynamic time warping (DTW) algorithm is used to recognize the speech signal from the user. The action performed by the robot arm in the environment is done by reducing the redundancy which frequently fac...
متن کاملDesigning and implementing a system for Automatic recognition of Persian letters by Lip-reading using image processing methods
For many years, speech has been the most natural and efficient means of information exchange for human beings. With the advancement of technology and the prevalence of computer usage, the design and production of speech recognition systems have been considered by researchers. Among this, lip-reading techniques encountered with many challenges for speech recognition, that one of the challenges b...
متن کاملClassification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملFast training algorithms for multilayer neural nets
An algorithm that is faster than back-propagation and for which it is not necessary to specify the number of hidden units in advance is described. The relationship with other fast pattern-recognition algorithms, such as algorithms based on k-d trees, is discussed. The algorithm has been implemented and tested on artificial problems, such as the parity problem, and on real problems arising in sp...
متن کامل